-->
HP USB Disk Storage Format Tool is really a free disk formatting tool which allows people to easily and quickly format a USB flash drive to FAT32, exFAT or NTFS file system. And it can work flawlessly even when Windows was unable to complete the format when your usb pen drive turned raw format. Connect a USB 3.0 flash drive (USB Mass Storage Device) to one of the Intel USB 3.0 ports. In Device Manager, click View, and click Devices by connection. In Devices by connection view, you can easily see the USB Mass Storage device under the Intel® USB 3.0 eXtensible Host Controller category.
In this topic you'll use the USB User-Mode Driver template provided with Microsoft Visual Studio 2019 to write a user-mode driver framework (UMDF)-based client driver. After building and installing the client driver, you'll view the client driver in Device Manager and view the driver output in a debugger.
UMDF (referred to as the framework in this topic) is based on the component object model (COM). Every framework object must implement IUnknown and its methods, QueryInterface, AddRef, and Release, by default. The AddRef and Release methods manage the object's lifetime, so the client driver does not need to maintain the reference count. The QueryInterface method enables the client driver to get interface pointers to other framework objects in the Windows Driver Frameworks (WDF) object model. Framework objects perform complicated driver tasks and interact with Windows. Certain framework objects expose interfaces that enable a client driver to interact with the framework.
A UMDF-based client driver is implemented as an in-process COM server (DLL), and C++ is the preferred language for writing a client driver for a USB device. Typically, the client driver implements several interfaces exposed by the framework. This topic refers to a client driver-defined class that implements framework interfaces as a callback class. After these classes are instantiated, the resulting callback objects are partnered with particular framework objects. This partnership gives the client driver the opportunity to respond to device or system-related events that are reported by the framework. Whenever Windows notifies the framework about certain events, the framework invokes the client driver's callback, if one is available. Otherwise the framework proceeds with the default processing of the event. The template code defines driver, device, and queue callback classes.
For an explanation about the source code generated by the template, see Understanding the UMDF template code for USB client driver.
Prerequisites
For developing, debugging, and installing a user-mode driver, you need two computers:
- A host computer running Windows 7 or a later version of the Windows operating system. The host computer is your development environment, where you write and debug your driver.
- A target computer running the version of the operating system that you want to test your driver on, for example, Windows 10, version 1903. The target computer has the user-mode driver that you want to debug and one of the debuggers.
In some cases, where the host and target computers are running the same version of Windows, you can have just one computer running Windows 7 or a later version of the Windows. This topic assumes that you are using two computers for developing, debugging, and installing your user mode driver.
Before you begin, make sure that you meet the following requirements:
Software requirements
Your host computer has Visual Studio 2019.
Your host computer has the latest Windows Driver Kit (WDK) for Windows 10, version 1903.
The kit include headers, libraries, tools, documentation, and the debugging tools required to develop, build, and debug a USB client driver. You can get the latest version of the WDK from How to Get the WDK.
Your host computer has the latest version of debugging tools for Windows. You can get the latest version from the WDK or you can Download and Install Debugging Tools for Windows.
If you are using two computers, you must configure the host and target computers for user-mode debugging. For more information, see Setting Up User-Mode Debugging in Visual Studio.
Hardware requirements
Get a USB device for which you will be writing the client driver. In most cases, you are provided with a USB device and its hardware specification. The specification describes device capabilities and the supported vendor commands. Use the specification to determine the functionality of the USB driver and the related design decisions.
If you are new to USB driver development, use the OSR USB FX2 learning kit to study USB samples included with the WDK. It contains the USB FX2 device and all the required hardware specifications to implement a client driver.
Recommended reading
- Developing Drivers with Windows Driver Foundation, written by Penny Orwick and Guy Smith. For more information, see Developing Drivers with WDF.
Instructions
Step 1: Generate the UMDF driver code by using the Visual Studio 2019 USB driver template
For instructions about generating UMDF driver code, see Writing a UMDF driver based on a template.
For USB-specific code, select the following options in Visual Studio 2019
- In the New Project dialog box, in the search box at the top, type USB.
- n the middle pane, select User Mode Driver, USB (UMDF V2).
- lick Next.
- Enter a project name, choose a save location, and click Create.
The following screen shots show the New Project dialog box for the USB User-Mode Driver template.
This topic assumes that the name of the project is 'MyUSBDriver_UMDF_'. It contains the following files:
Files | Description |
---|---|
Driver.h; Driver.c | Declares and defines a callback class that implements the IDriverEntry interface. The class defines methods that are invoked by the framework driver object. The main purpose of this class is to create a device object for the client driver. |
Device.h; Device.c | Declares and defines a callback class that implements the IPnpCallbackHardware interface. The class defines methods that are invoked by the framework device object. The main purpose of this class is to handle events occurring as a result of Plug and Play (PnP) state changes. The class also allocates and initializes resources required by the client driver as long as it is loaded in the system. |
IoQueue.h; IoQueue.c | Declares and defines a callback class that implements the IQueueCallbackDeviceIoControl interface. The class defines methods that are invoked by the framework queue object. The purpose of this class is to retrieve I/O requests that are queued in the framework. |
Internal.h | Provides common declarations shared by the client driver and user applications that communicate with the USB device. It also declares tracing functions and macros. |
Dllsup.cpp | Contains the implementation of the driver module's entry point. |
<Project name>.inf | INF file that is required to install the client driver on the target computer. |
Exports.def | DEF file that exports the entry point function name of the driver module. |
Step 2: Modify the INF file to add information about your device
Before you build the driver, you must modify the template INF file with information about your device, specifically the hardware ID string.
To provide the hardware ID string
Attach your USB device to your host computer and let Windows enumerate the device.
Open Device Manager and open properties for your device.
On the Details tab, select Hardward Ids under Property.
The hardware ID for the device is displayed in the list box. Select and hold (or right-click) and copy the hardware ID string.
In Solution Explorer, expand Driver Files, and open the INF.
Replace the following your hardware ID string.
[Standard.NT$ARCH$]
%DeviceName%=MyDevice_Install, USBVID_vvvv&PID_pppp
Notice the AddReg entries in the driver's information (INF) file.
[CoInstallers_AddReg] ;
HKR,CoInstallers32,0x00010008,'WudfCoinstaller.dll'
HKR,CoInstallers32,0x00010008,'WudfUpdate_01011.dll'
HKR,CoInstallers32,0x00010008,'WdfCoInstaller01011.dll,WdfCoInstaller'
HKR,CoInstallers32,0x00010008,'WinUsbCoinstaller2.dll'
- WudfCoinstaller.dll (configuration co-installer)
- WUDFUpdate_<version>.dll (redistributable co-installer)
- Wdfcoinstaller<version>.dll (co-installers for KMDF)
- Winusbcoinstaller2.dll ((co-installers for Winusb.sys)
- MyUSBDriver_UMDF_.dll (client driver module)
If your INF AddReg directive references the UMDF redistributable co-installer (WUDFUpdate_<version>.dll ), you must not make a reference to the configuration co-installer (WUDFCoInstaller.dll). Referencing both co-installers in the INF will lead to installation errors.
All UMDF-based USB client drivers require two Microsoft-provided drivers: the reflector and WinUSB.
Reflector—If your driver gets loaded successfully, the reflector is loaded as the top-most driver in the kernel-mode stack. The reflector must be the top driver in the kernel mode stack. To meet this requirement, the template's INF file specifies the reflector as a service and WinUSB as a lower-filter driver in the INF:
[MyDevice_Install.NT.Services]
AddService=WUDFRd,0x000001fa,WUDFRD_ServiceInstall ; flag 0x2 sets this as the service for the device
AddService=WinUsb,0x000001f8,WinUsb_ServiceInstall ; this service is installed because its a filter.
WinUSB—The installation package must contain coinstallers for Winusb.sys because for the client driver, WinUSB is the gateway to the kernel-mode USB driver stack. Another component that gets loaded is a user-mode DLL, named WinUsb.dll, in the client driver's host process (Wudfhost.exe). Winusb.dll exposes WinUSB Functions that simplify the communication process between the client driver and WinUSB.
Step 3: Build the USB client driver code
Disc Soft Usb Devices Driver Windows 10
To build your driver
- Open the driver project or solution in Visual Studio 2019.
- Right-click the solution in the Solution Explorer and select Configuration Manager.
- From the Configuration Manager, select your Active Solution Configuration (for example, Debug or Release) and your Active Solution Platform (for example, Win32) that correspond to the type of build you are interested in.
- Verify that your device interface GUID is accurate throughout the project.
- The device interface GUID is defined in Trace.h and is referenced from
MyUSBDriverUMDFCreateDevice
in Device.c. When you create your project with the name 'MyUSBDriver_UMDF_', Visual Studio 2019 defines the device interface GUID with the nameGUID_DEVINTERFACE_MyUSBDriver_UMDF_
but callsWdfDeviceCreateDeviceInterface
with the incorrect parameter 'GUID_DEVINTERFACE_MyUSBDriverUMDF'. Replace the incorrect parameter with the name defined in Trace.h to ensure that the driver builds properly.
- The device interface GUID is defined in Trace.h and is referenced from
- From the Build menu, click Build Solution.
For more information, see Building a Driver.
Step 4: Configure a computer for testing and debugging
To test and debug a driver, you run the debugger on the host computer and the driver on the target computer. So far, you have used Visual Studio on the host computer to build a driver. Next you need to configure a target computer. To configure a target computer, follow the instructions in Provision a computer for driver deployment and testing.
Step 5: Enable tracing for kernel debugging
The template code contains several trace messages (TraceEvents) that can help you track function calls. All functions in the source code contain trace messages that mark the entry and exit of a routine. For errors, the trace message contains the error code and a meaningful string. Because WPP tracing is enabled for your driver project, the PDB symbol file created during the build process contains trace message formatting instructions. If you configure the host and target computers for WPP tracing, your driver can send trace messages to a file or the debugger.
To configure your host computer for WPP tracing
Create trace message format (TMF) files by extracting trace message formatting instructions from the PDB symbol file.
You can use Tracepdb.exe to create TMF files. The tool is located in the <install folder>Windows Kits10bin<architecture> folder of the WDK. The following command creates TMF files for the driver project.
tracepdb -f [PDBFiles] -p [TMFDirectory]
The -f option specifies the location and the name of the PDB symbol file. The -p option specifies the location for the TMF files that are created by Tracepdb. For more information, see Tracepdb Commands.
At the specified location you'll see three files (one per .c file in the project). They are given GUID file names.
In the debugger, type the following commands:
These commands:
- Load the Wmitrace.dll extension.
- Verfies that the debugger extension is loaded.
- Adds the location of the TMF files to the debugger extension's search path.
The output resembles this:
To configure your target computer for WPP tracing
- Make sure you have the Tracelog tool on your target computer. The tool is located in the <install_folder>Windows Kits10Tools<arch> folder of the WDK. For more information, see Tracelog Command Syntax.
- Open a Command Window and run as administrator.
- Type the following command:
The command starts a trace session named MyTrace.
The guid argument specifies the GUID of the trace provider, which is the client driver. You can get the GUID from Trace.h in the Visual Studio 2019 project. As another option, you can type the following command and specify the GUID in a .guid file. The file contains the GUID in hyphen format:
You can stop the trace session by typing the following command:
Open Usb Device
Step 6: Deploy the driver on the target computer
- In the Solution Explorer window, select and hold (or right-click) the <project name>Package , and choose Properties.
- In the left pane, navigate to Configuration Properties > Driver Install > Deployment.
- Check Enable deployment, and check Import into driver store.
- For Remote Computer Name, specify the name of the target computer.
- Select Install and Verify.
- Select Ok.
- On the Debug menu, choose Start Debugging, or press F5 on the keyboard.
Note
Do not specify the hardware ID of your device under Hardware ID Driver Update. The hardware ID must be specified only in your driver's information (INF) file.
Step 7: View the driver in Device Manager
Enter the following command to open Device Manager.
devmgmt
Verify that Device Manager shows the following node.
USB Device
MyUSBDriver_UMDF_Device
Step 8: View the output in the debugger
Verify that trace messages appear in the Debugger Immediate Window on the host computer.
The output should be similar to the following:
Remarks
Let’s take a look at how the framework and the client driver work together to interact with Windows and handle requests sent to the USB device. This illustration shows the modules loaded in the system for a UMDF -based USB client driver.
The purpose of each module is described here:
- Application—a user-mode process that issues I/O requests to communicate with the USB device.
- I/O Manager—a Windows component that creates I/O request packets (IRPs) to represent the received application requests, and forwards them to the top of the kernel-mode device stack for the target device.
- Reflector—a Microsoft-provided kernel-mode driver installed at the top of the kernel-mode device stack (WUDFRd.sys). The reflector redirects IRPs received from the I/O manager to the client driver host process. Upon receiving the request, the framework and the client driver handle the request.
- Host process —the process in which the user-mode driver runs (Wudfhost.exe). It also hosts the framework and the I/O dispatcher.
- Client driver—the user-mode function driver for the USB device.
- UMDF—the framework module that handles most interactions with Windows on the behalf of the client driver. It exposes the user-mode device driver interfaces (DDIs) that the client driver can use to perform common driver tasks.
- Dispatcher—mechanism that runs in the host process; determines how to forward a request to the kernel mode after it has been processed by user-mode drivers and has reached the bottom of the user-mode stack. In the illustration, the dispatcher forwards the request to the user-mode DLL, Winusb.dll.
- Winusb.dll—a Microsoft-provided user-mode DLL that exposes WinUSB Functions that simplify the communication process between the client driver and WinUSB (Winusb.sys, loaded in kernel mode).
- Winusb.sys—a Microsoft-provided driver that is required by all UMDF client drivers for USB devices. The driver must be installed below the reflector and acts as the gateway to the USB driver stack in the kernel-mode. For more information, see WinUSB.
- USB driver stack—a set of drivers, provided by Microsoft, that handle protocol-level communication with the USB device. For more information, see USB host-side drivers in Windows.
Whenever an application makes a request for the USB driver stack, the Windows I/O manager sends the request to the reflector, which directs it to client driver in user mode. The client driver handles the request by calling specific UMDF methods, which internally call WinUSB Functions to send the request to WinUSB. Upon receiving the request, WinUSB either processes the request or forwards it to the USB driver stack.
Related topics
Understanding the UMDF template code for USB client driver
How to enable USB selective suspend and system wake in the UMDF driver for a USB device
Getting started with USB client driver development
Summary
When you start your PC from the Windows 7 or Windows Vista setup disk, you may receive the following error:
A required CD/DVD driver device driver is missing. If you have a driver floppy disk, CD, DVD, or USB flash drive, please insert it now.
This error can occur if one or more of the following scenarios are true:
The CD/DVD drive may not be compatible with Windows 7 or Windows Vista
The CD/DVD media may be damaged or dirty
Your CD/DVD drive may be incompatible with the Microsoft AHCI driver (msahci.sys)
Note: If your CD/DVD or other drive is not displayed in Windows Explorer view, see the following article:
My Drive does not appear in Windows Explorer view
Resolution
To resolve this issue, read the scenario that best describes your situation:
The CD/DVD drive may not be compatible with Windows 7 or Windows Vista
If your installing Windows to an older PC, the CD/DVD drive may not be compatible with Windows 7 and Windows Vista, the CD/DVD drive may need to be replaced.
The CD/DVD media may be damaged or dirty
Remove the DVD media and check for scratches, cracks or smudges that may make the DVD difficult to read, if the media is scratched or cracked, you must get replacement media. If the DVD is dirty or smudged, clean the DVD with warm water and a soft cloth. Be sore the DVD is completely clean and dry before re-inserting into the CD/DVD drive. Next, restart the computer and press any key when you are prompted and start Setup.
The CD/DVD drive may not be compatible with the Microsoft AHCI driver (msahci.sys)
If your CD/DVD drive is not compatible with the Microsoft AHCI driver (msahci.sys), your disk controller may be set to AHCI in the system BIOS. You may be able to resolve the issue by disabling AHCI mode for your disk controller in the BIOS. There are multiple BIOS manufacturers and BIOS versions, you should check your system documentation or visit your PC manufacturers website for instructions about how to change this setting.
Note: The basic process for changing the disk controller setting is to restart your computer and enter the system BIOS. The most common method is to press F2 to enter Setup, (different PC's may use a different key). On the BIOS screen, browse to the setting that offers AHCI, ATA, or IDE and possibly RAID. If the setting is set to AHCI, change the setting to ATA. Restart the PC to the Windows Setup disk
Warning: Incorrect settings in the System BIOS can cause your PC's function incorrectly. If you are not familiar with configuring the system BIOS, you should contact the PC manufacturer for assistance.
If you are still cannot start the PC from the Windows 7 or Windows Vista Setup disk, see additional options for Installing Windows bellow:
Replace the CD/DVD drive
If the DVD media is damaged, replace the media
Install Windows by using Windows setup from a USB drive
Install Windows by using a network install or an online installation
Contact the hardware manufacturer for support